Points

The points are the central entity that Qdrant operates with. A point is a record consisting of a vector and an optional payload.

It looks like this:

// This is a simple point
{
    "id": 129,
    "vector": [0.1, 0.2, 0.3, 0.4],
    "payload": {"color": "red"},
}

You can search among the points grouped in one collection based on vector similarity. This procedure is described in more detail in the search and filtering sections.

This section explains how to create and manage vectors.

Any point modification operation is asynchronous and takes place in 2 steps. At the first stage, the operation is written to the Write-ahead-log.

After this moment, the service will not lose the data, even if the machine loses power supply.

Point IDs

Qdrant supports using both 64-bit unsigned integers and UUID as identifiers for points.

Examples of UUID string representations:

  • simple: 936DA01F9ABD4d9d80C702AF85C822A8
  • hyphenated: 550e8400-e29b-41d4-a716-446655440000
  • urn: urn:uuid:F9168C5E-CEB2-4faa-B6BF-329BF39FA1E4

That means that in every request UUID string could be used instead of numerical id. Example:

PUT /collections/{collection_name}/points
{
    "points": [
        {
            "id": "5c56c793-69f3-4fbf-87e6-c4bf54c28c26",
            "payload": {"color": "red"},
            "vector": [0.9, 0.1, 0.1]
        }
    ]
}
from qdrant_client import QdrantClient, models

client = QdrantClient(url="http://localhost:6333")

client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id="5c56c793-69f3-4fbf-87e6-c4bf54c28c26",
            payload={
                "color": "red",
            },
            vector=[0.9, 0.1, 0.1],
        ),
    ],
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.upsert("{collection_name}", {
  points: [
    {
      id: "5c56c793-69f3-4fbf-87e6-c4bf54c28c26",
      payload: {
        color: "red",
      },
      vector: [0.9, 0.1, 0.1],
    },
  ],
});
use qdrant_client::{client::QdrantClient, qdrant::PointStruct};
use serde_json::json;

let client = QdrantClient::from_url("http://localhost:6334").build()?;

client
    .upsert_points_blocking(
        "{collection_name}".to_string(),
        None,
        vec![PointStruct::new(
            "5c56c793-69f3-4fbf-87e6-c4bf54c28c26".to_string(),
            vec![0.05, 0.61, 0.76, 0.74],
            json!(
                {"color": "Red"}
            )
            .try_into()
            .unwrap(),
        )],
        None,
    )
    .await?;
import java.util.List;
import java.util.Map;
import java.util.UUID;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.PointStruct;

QdrantClient client =
    new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(UUID.fromString("5c56c793-69f3-4fbf-87e6-c4bf54c28c26")))
                .setVectors(vectors(0.05f, 0.61f, 0.76f, 0.74f))
                .putAllPayload(Map.of("color", value("Red")))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient("localhost", 6334);

await client.UpsertAsync(
	collectionName: "{collection_name}",
	points: new List<PointStruct>
	{
		new()
		{
			Id = Guid.Parse("5c56c793-69f3-4fbf-87e6-c4bf54c28c26"),
			Vectors = new[] { 0.05f, 0.61f, 0.76f, 0.74f },
			Payload = { ["city"] = "red" }
		}
	}
);

and

PUT /collections/{collection_name}/points
{
    "points": [
        {
            "id": 1,
            "payload": {"color": "red"},
            "vector": [0.9, 0.1, 0.1]
        }
    ]
}
client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            payload={
                "color": "red",
            },
            vector=[0.9, 0.1, 0.1],
        ),
    ],
)
client.upsert("{collection_name}", {
  points: [
    {
      id: 1,
      payload: {
        color: "red",
      },
      vector: [0.9, 0.1, 0.1],
    },
  ],
});
use qdrant_client::qdrant::PointStruct;
use serde_json::json;

client
    .upsert_points_blocking(
        1,
        None,
        vec![PointStruct::new(
            "5c56c793-69f3-4fbf-87e6-c4bf54c28c26".to_string(),
            vec![0.05, 0.61, 0.76, 0.74],
            json!(
                {"color": "Red"}
            )
            .try_into()
            .unwrap(),
        )],
        None,
    )
    .await?;
import java.util.List;
import java.util.Map;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.PointStruct;

QdrantClient client =
    new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(vectors(0.05f, 0.61f, 0.76f, 0.74f))
                .putAllPayload(Map.of("color", value("Red")))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient("localhost", 6334);

await client.UpsertAsync(
	collectionName: "{collection_name}",
	points: new List<PointStruct>
	{
		new()
		{
			Id = 1,
			Vectors = new[] { 0.05f, 0.61f, 0.76f, 0.74f },
			Payload = { ["city"] = "red" }
		}
	}
);

are both possible.

Vectors

Each point in qdrant may have one or more vectors. Vectors are the central component of the Qdrant architecture, qdrant relies on different types of vectors to provide different types of data exploration and search.

Here is a list of supported vector types:

Dense VectorsA regular vectors, generated by majority of the embedding models.
Sparse VectorsVectors with no fixed length, but only a few non-zero elements.
Useful for exact token match and collaborative filtering recommendations.
MultiVectorsMatrices of numbers with fixed length but variable height.
Usually obtained from late interraction models like ColBERT.

It is possible to attach more than one type of vector to a single point. In Qdrant we call it Named Vectors.

Read more about vector types, how they are stored and optimized in the vectors section.

Upload points

To optimize performance, Qdrant supports batch loading of points. I.e., you can load several points into the service in one API call. Batching allows you to minimize the overhead of creating a network connection.

The Qdrant API supports two ways of creating batches - record-oriented and column-oriented. Internally, these options do not differ and are made only for the convenience of interaction.

Create points with batch:

PUT /collections/{collection_name}/points
{
    "batch": {
        "ids": [1, 2, 3],
        "payloads": [
            {"color": "red"},
            {"color": "green"},
            {"color": "blue"}
        ],
        "vectors": [
            [0.9, 0.1, 0.1],
            [0.1, 0.9, 0.1],
            [0.1, 0.1, 0.9]
        ]
    }
}
client.upsert(
    collection_name="{collection_name}",
    points=models.Batch(
        ids=[1, 2, 3],
        payloads=[
            {"color": "red"},
            {"color": "green"},
            {"color": "blue"},
        ],
        vectors=[
            [0.9, 0.1, 0.1],
            [0.1, 0.9, 0.1],
            [0.1, 0.1, 0.9],
        ],
    ),
)
client.upsert("{collection_name}", {
  batch: {
    ids: [1, 2, 3],
    payloads: [{ color: "red" }, { color: "green" }, { color: "blue" }],
    vectors: [
      [0.9, 0.1, 0.1],
      [0.1, 0.9, 0.1],
      [0.1, 0.1, 0.9],
    ],
  },
});

or record-oriented equivalent:

PUT /collections/{collection_name}/points
{
    "points": [
        {
            "id": 1,
            "payload": {"color": "red"},
            "vector": [0.9, 0.1, 0.1]
        },
        {
            "id": 2,
            "payload": {"color": "green"},
            "vector": [0.1, 0.9, 0.1]
        },
        {
            "id": 3,
            "payload": {"color": "blue"},
            "vector": [0.1, 0.1, 0.9]
        }
    ]
}
client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            payload={
                "color": "red",
            },
            vector=[0.9, 0.1, 0.1],
        ),
        models.PointStruct(
            id=2,
            payload={
                "color": "green",
            },
            vector=[0.1, 0.9, 0.1],
        ),
        models.PointStruct(
            id=3,
            payload={
                "color": "blue",
            },
            vector=[0.1, 0.1, 0.9],
        ),
    ],
)
client.upsert("{collection_name}", {
  points: [
    {
      id: 1,
      payload: { color: "red" },
      vector: [0.9, 0.1, 0.1],
    },
    {
      id: 2,
      payload: { color: "green" },
      vector: [0.1, 0.9, 0.1],
    },
    {
      id: 3,
      payload: { color: "blue" },
      vector: [0.1, 0.1, 0.9],
    },
  ],
});
use qdrant_client::qdrant::PointStruct;
use serde_json::json;

client
    .upsert_points_batch_blocking(
        "{collection_name}".to_string(),
        None,
        vec![
            PointStruct::new(
                1,
                vec![0.9, 0.1, 0.1],
                json!(
                    {"color": "red"}
                )
                .try_into()
                .unwrap(),
            ),
            PointStruct::new(
                2,
                vec![0.1, 0.9, 0.1],
                json!(
                    {"color": "green"}
                )
                .try_into()
                .unwrap(),
            ),
            PointStruct::new(
                3,
                vec![0.1, 0.1, 0.9],
                json!(
                    {"color": "blue"}
                )
                .try_into()
                .unwrap(),
            ),
        ],
        None,
        100,
    )
    .await?;
import java.util.List;
import java.util.Map;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.PointStruct;

QdrantClient client =
    new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(vectors(0.9f, 0.1f, 0.1f))
                .putAllPayload(Map.of("color", value("red")))
                .build(),
            PointStruct.newBuilder()
                .setId(id(2))
                .setVectors(vectors(0.1f, 0.9f, 0.1f))
                .putAllPayload(Map.of("color", value("green")))
                .build(),
            PointStruct.newBuilder()
                .setId(id(3))
                .setVectors(vectors(0.1f, 0.1f, 0.9f))
                .putAllPayload(Map.of("color", value("blue")))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient("localhost", 6334);

await client.UpsertAsync(
	collectionName: "{collection_name}",
	points: new List<PointStruct>
	{
		new()
		{
			Id = 1,
			Vectors = new[] { 0.9f, 0.1f, 0.1f },
			Payload = { ["city"] = "red" }
		},
		new()
		{
			Id = 2,
			Vectors = new[] { 0.1f, 0.9f, 0.1f },
			Payload = { ["city"] = "green" }
		},
		new()
		{
			Id = 3,
			Vectors = new[] { 0.1f, 0.1f, 0.9f },
			Payload = { ["city"] = "blue" }
		}
	}
);

The Python client has additional features for loading points, which include:

  • Parallelization
  • A retry mechanism
  • Lazy batching support

For example, you can read your data directly from hard drives, to avoid storing all data in RAM. You can use these features with the upload_collection and upload_points methods. Similar to the basic upsert API, these methods support both record-oriented and column-oriented formats.

Column-oriented format:

client.upload_collection(
    collection_name="{collection_name}",
    ids=[1, 2],
    payload=[
        {"color": "red"},
        {"color": "green"},
    ],
    vectors=[
        [0.9, 0.1, 0.1],
        [0.1, 0.9, 0.1],
    ],
    parallel=4,
    max_retries=3,
)

Record-oriented format:

client.upload_points(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            payload={
                "color": "red",
            },
            vector=[0.9, 0.1, 0.1],
        ),
        models.PointStruct(
            id=2,
            payload={
                "color": "green",
            },
            vector=[0.1, 0.9, 0.1],
        ),
    ],
    parallel=4,
    max_retries=3,
)

All APIs in Qdrant, including point loading, are idempotent. It means that executing the same method several times in a row is equivalent to a single execution.

In this case, it means that points with the same id will be overwritten when re-uploaded.

Idempotence property is useful if you use, for example, a message queue that doesn’t provide an exactly-ones guarantee. Even with such a system, Qdrant ensures data consistency.

Available as of v0.10.0

If the collection was created with multiple vectors, each vector data can be provided using the vector’s name:

PUT /collections/{collection_name}/points
{
    "points": [
        {
            "id": 1,
            "vector": {
                "image": [0.9, 0.1, 0.1, 0.2],
                "text": [0.4, 0.7, 0.1, 0.8, 0.1, 0.1, 0.9, 0.2]
            }
        },
        {
            "id": 2,
            "vector": {
                "image": [0.2, 0.1, 0.3, 0.9],
                "text": [0.5, 0.2, 0.7, 0.4, 0.7, 0.2, 0.3, 0.9]
            }
        }
    ]
}
client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            vector={
                "image": [0.9, 0.1, 0.1, 0.2],
                "text": [0.4, 0.7, 0.1, 0.8, 0.1, 0.1, 0.9, 0.2],
            },
        ),
        models.PointStruct(
            id=2,
            vector={
                "image": [0.2, 0.1, 0.3, 0.9],
                "text": [0.5, 0.2, 0.7, 0.4, 0.7, 0.2, 0.3, 0.9],
            },
        ),
    ],
)
client.upsert("{collection_name}", {
  points: [
    {
      id: 1,
      vector: {
        image: [0.9, 0.1, 0.1, 0.2],
        text: [0.4, 0.7, 0.1, 0.8, 0.1, 0.1, 0.9, 0.2],
      },
    },
    {
      id: 2,
      vector: {
        image: [0.2, 0.1, 0.3, 0.9],
        text: [0.5, 0.2, 0.7, 0.4, 0.7, 0.2, 0.3, 0.9],
      },
    },
  ],
});
use qdrant_client::qdrant::PointStruct;
use std::collections::HashMap;

client
    .upsert_points_blocking(
        "{collection_name}".to_string(),
        None,
        vec![
            PointStruct::new(
                1,
                HashMap::from([
                    ("image".to_string(), vec![0.9, 0.1, 0.1, 0.2]),
                    (
                        "text".to_string(),
                        vec![0.4, 0.7, 0.1, 0.8, 0.1, 0.1, 0.9, 0.2],
                    ),
                ]),
                HashMap::new().into(),
            ),
            PointStruct::new(
                2,
                HashMap::from([
                    ("image".to_string(), vec![0.2, 0.1, 0.3, 0.9]),
                    (
                        "text".to_string(),
                        vec![0.5, 0.2, 0.7, 0.4, 0.7, 0.2, 0.3, 0.9],
                    ),
                ]),
                HashMap::new().into(),
            ),
        ],
        None,
    )
    .await?;
import java.util.List;
import java.util.Map;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.VectorFactory.vector;
import static io.qdrant.client.VectorsFactory.namedVectors;

import io.qdrant.client.grpc.Points.PointStruct;

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(
                    namedVectors(
                        Map.of(
                            "image",
                            vector(List.of(0.9f, 0.1f, 0.1f, 0.2f)),
                            "text",
                            vector(List.of(0.4f, 0.7f, 0.1f, 0.8f, 0.1f, 0.1f, 0.9f, 0.2f)))))
                .build(),
            PointStruct.newBuilder()
                .setId(id(2))
                .setVectors(
                    namedVectors(
                        Map.of(
                            "image",
                            List.of(0.2f, 0.1f, 0.3f, 0.9f),
                            "text",
                            List.of(0.5f, 0.2f, 0.7f, 0.4f, 0.7f, 0.2f, 0.3f, 0.9f))))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient("localhost", 6334);

await client.UpsertAsync(
	collectionName: "{collection_name}",
	points: new List<PointStruct>
	{
		new()
		{
			Id = 1,
			Vectors = new Dictionary<string, float[]>
			{
				["image"] = [0.9f, 0.1f, 0.1f, 0.2f],
				["text"] = [0.4f, 0.7f, 0.1f, 0.8f, 0.1f, 0.1f, 0.9f, 0.2f]
			}
		},
		new()
		{
			Id = 2,
			Vectors = new Dictionary<string, float[]>
			{
				["image"] = [0.2f, 0.1f, 0.3f, 0.9f],
				["text"] = [0.5f, 0.2f, 0.7f, 0.4f, 0.7f, 0.2f, 0.3f, 0.9f]
			}
		}
	}
);

Available as of v1.2.0

Named vectors are optional. When uploading points, some vectors may be omitted. For example, you can upload one point with only the image vector and a second one with only the text vector.

When uploading a point with an existing ID, the existing point is deleted first, then it is inserted with just the specified vectors. In other words, the entire point is replaced, and any unspecified vectors are set to null. To keep existing vectors unchanged and only update specified vectors, see update vectors.

Available as of v1.7.0

Points can contain dense and sparse vectors.

A sparse vector is an array in which most of the elements have a value of zero.

It is possible to take advantage of this property to have an optimized representation, for this reason they have a different shape than dense vectors.

They are represented as a list of (index, value) pairs, where index is an integer and value is a floating point number. The index is the position of the non-zero value in the vector. The values is the value of the non-zero element.

For example, the following vector:

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 0.0, 0.0]

can be represented as a sparse vector:

[(6, 1.0), (7, 2.0)]

Qdrant uses the following JSON representation throughout its APIs.

{
  "indices": [6, 7],
  "values": [1.0, 2.0]
}

The indices and values arrays must have the same length. And the indices must be unique.

If the indices are not sorted, Qdrant will sort them internally so you may not rely on the order of the elements.

Sparse vectors must be named and can be uploaded in the same way as dense vectors.

PUT /collections/{collection_name}/points
{
    "points": [
        {
            "id": 1,
            "vector": {
                "text": {
                    "indices": [6, 7],
                    "values": [1.0, 2.0]
                }
            }
        },
        {
            "id": 2,
            "vector": {
                "text": {
                    "indices": [1, 1, 2, 3, 4, 5],
                    "values": [0.1, 0.2, 0.3, 0.4, 0.5]
                }
            }
        }
    ]
}
client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            vector={
                "text": models.SparseVector(
                    indices=[6, 7],
                    values=[1.0, 2.0],
                )
            },
        ),
        models.PointStruct(
            id=2,
            vector={
                "text": models.SparseVector(
                    indices=[1, 2, 3, 4, 5],
                    values=[0.1, 0.2, 0.3, 0.4, 0.5],
                )
            },
        ),
    ],
)
client.upsert("{collection_name}", {
  points: [
    {
      id: 1,
      vector: {
        text: {
          indices: [6, 7],
          values: [1.0, 2.0],
        },
      },
    },
    {
      id: 2,
      vector: {
        text: {
          indices: [1, 2, 3, 4, 5],
          values: [0.1, 0.2, 0.3, 0.4, 0.5],
        },
      },
    },
  ],
});
use qdrant_client::qdrant::{PointStruct, Vector};
use std::collections::HashMap;

client
    .upsert_points_blocking(
        "{collection_name}".to_string(),
        vec![
            PointStruct::new(
                1,
                HashMap::from([
                    (
                        "text".to_string(),
                        Vector::from(
                            (vec![6, 7], vec![1.0, 2.0])
                        ),
                    ),
                ]),
                HashMap::new().into(),
            ),
            PointStruct::new(
                2,
                HashMap::from([
                    (
                        "text".to_string(),
                        Vector::from(
                            (vec![1, 2, 3, 4, 5], vec![0.1, 0.2, 0.3, 0.4, 0.5])
                        ),
                    ),
                ]),
                HashMap::new().into(),
            ),
        ],
        None,
    )
    .await?;
import java.util.List;
import java.util.Map;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.VectorFactory.vector;

import io.qdrant.client.grpc.Points.NamedVectors;
import io.qdrant.client.grpc.Points.PointStruct;
import io.qdrant.client.grpc.Points.Vectors;

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(
                    Vectors.newBuilder()
                        .setVectors(
                            NamedVectors.newBuilder()
                                .putAllVectors(
                                    Map.of(
                                        "text", vector(List.of(1.0f, 2.0f), List.of(6, 7))))
                                .build())
                        .build())
                .build(),
            PointStruct.newBuilder()
                .setId(id(2))
                .setVectors(
                    Vectors.newBuilder()
                        .setVectors(
                            NamedVectors.newBuilder()
                                .putAllVectors(
                                    Map.of(
                                        "text",
                                        vector(
                                            List.of(0.1f, 0.2f, 0.3f, 0.4f, 0.5f),
                                            List.of(1, 2, 3, 4, 5))))
                                .build())
                        .build())
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient("localhost", 6334);

await client.UpsertAsync(
	collectionName: "{collection_name}",
	points: new List<PointStruct>
	{
		new()
		{
			Id = 1,
			Vectors = new Dictionary<string, Vector> { ["text"] = ([1.0f, 2.0f], [6, 7]) }
		},
		new()
		{
			Id = 2,
			Vectors = new Dictionary<string, Vector>
			{
				["text"] = ([0.1f, 0.2f, 0.3f, 0.4f, 0.5f], [1, 2, 3, 4, 5])
			}
		}
	}
);

Modify points

To change a point, you can modify its vectors or its payload. There are several ways to do this.

Update vectors

Available as of v1.2.0

This method updates the specified vectors on the given points. Unspecified vectors are kept unchanged. All given points must exist.

REST API (Schema):

PUT /collections/{collection_name}/points/vectors
{
    "points": [
        {
            "id": 1,
            "vector": {
                "image": [0.1, 0.2, 0.3, 0.4]
            }
        },
        {
            "id": 2,
            "vector": {
                "text": [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]
            }
        }
    ]
}
client.update_vectors(
    collection_name="{collection_name}",
    points=[
        models.PointVectors(
            id=1,
            vector={
                "image": [0.1, 0.2, 0.3, 0.4],
            },
        ),
        models.PointVectors(
            id=2,
            vector={
                "text": [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2],
            },
        ),
    ],
)
client.updateVectors("{collection_name}", {
  points: [
    {
      id: 1,
      vector: {
        image: [0.1, 0.2, 0.3, 0.4],
      },
    },
    {
      id: 2,
      vector: {
        text: [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2],
      },
    },
  ],
});
use qdrant_client::qdrant::PointVectors;
use std::collections::HashMap;

client
    .update_vectors_blocking(
        "{collection_name}",
        None,
        &[
            PointVectors {
                id: Some(1.into()),
                vectors: Some(
                    HashMap::from([("image".to_string(), vec![0.1, 0.2, 0.3, 0.4])]).into(),
                ),
            },
            PointVectors {
                id: Some(2.into()),
                vectors: Some(
                    HashMap::from([(
                        "text".to_string(),
                        vec![0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2],
                    )])
                    .into(),
                ),
            },
        ],
        None,
    )
    .await?;
import java.util.List;
import java.util.Map;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.VectorFactory.vector;
import static io.qdrant.client.VectorsFactory.namedVectors;

client
    .updateVectorsAsync(
        "{collection_name}",
        List.of(
            PointVectors.newBuilder()
                .setId(id(1))
                .setVectors(namedVectors(Map.of("image", vector(List.of(0.1f, 0.2f, 0.3f, 0.4f)))))
                .build(),
            PointVectors.newBuilder()
                .setId(id(2))
                .setVectors(
                    namedVectors(
                        Map.of(
                            "text", vector(List.of(0.9f, 0.8f, 0.7f, 0.6f, 0.5f, 0.4f, 0.3f, 0.2f)))))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient("localhost", 6334);

await client.UpdateVectorsAsync(
	collectionName: "{collection_name}",
	points: new List<PointVectors>
	{
		new() { Id = 1, Vectors = ("image", new float[] { 0.1f, 0.2f, 0.3f, 0.4f }) },
		new()
		{
			Id = 2,
			Vectors = ("text", new float[] { 0.9f, 0.8f, 0.7f, 0.6f, 0.5f, 0.4f, 0.3f, 0.2f })
		}
	}
);

To update points and replace all of its vectors, see uploading points.

Delete vectors

Available as of v1.2.0

This method deletes just the specified vectors from the given points. Other vectors are kept unchanged. Points are never deleted.

REST API (Schema):

POST /collections/{collection_name}/points/vectors/delete
{
    "points": [0, 3, 100],
    "vectors": ["text", "image"]
}
client.delete_vectors(
    collection_name="{collection_name}",
    points=[0, 3, 100],
    vectors=["text", "image"],
)
client.deleteVectors("{collection_name}", {
  points: [0, 3, 10],
  vectors: ["text", "image"],
});
use qdrant_client::qdrant::{
    points_selector::PointsSelectorOneOf, PointsIdsList, PointsSelector, VectorsSelector,
};

client
    .delete_vectors_blocking(
        "{collection_name}",
        None,
        &PointsSelector {
            points_selector_one_of: Some(PointsSelectorOneOf::Points(PointsIdsList {
                ids: vec![0.into(), 3.into(), 10.into()],
            })),
        },
        &VectorsSelector {
            names: vec!["text".into(), "image".into()],
        },
        None,
    )
    .await?;
import java.util.List;

import static io.qdrant.client.PointIdFactory.id;

client
    .deleteVectorsAsync(
        "{collection_name}", List.of("text", "image"), List.of(id(0), id(3), id(10)))
    .get();

To delete entire points, see deleting points.

Update payload

Learn how to modify the payload of a point in the Payload section.

Delete points

REST API (Schema):

POST /collections/{collection_name}/points/delete
{
    "points": [0, 3, 100]
}
client.delete(
    collection_name="{collection_name}",
    points_selector=models.PointIdsList(
        points=[0, 3, 100],
    ),
)
client.delete("{collection_name}", {
  points: [0, 3, 100],
});
use qdrant_client::qdrant::{
    points_selector::PointsSelectorOneOf, PointsIdsList, PointsSelector,
};

client
    .delete_points_blocking(
        "{collection_name}",
        None,
        &PointsSelector {
            points_selector_one_of: Some(PointsSelectorOneOf::Points(PointsIdsList {
                ids: vec![0.into(), 3.into(), 100.into()],
            })),
        },
        None,
    )
    .await?;
import java.util.List;

import static io.qdrant.client.PointIdFactory.id;

client.deleteAsync("{collection_name}", List.of(id(0), id(3), id(100)));
using Qdrant.Client;

var client = new QdrantClient("localhost", 6334);

await client.DeleteAsync(collectionName: "{collection_name}", ids: [0, 3, 100]);

Alternative way to specify which points to remove is to use filter.

POST /collections/{collection_name}/points/delete
{
    "filter": {
        "must": [
            {
                "key": "color",
                "match": {
                    "value": "red"
                }
            }
        ]
    }
}
client.delete(
    collection_name="{collection_name}",
    points_selector=models.FilterSelector(
        filter=models.Filter(
            must=[
                models.FieldCondition(
                    key="color",
                    match=models.MatchValue(value="red"),
                ),
            ],
        )
    ),
)
client.delete("{collection_name}", {
  filter: {
    must: [
      {
        key: "color",
        match: {
          value: "red",
        },
      },
    ],
  },
});
use qdrant_client::qdrant::{
    points_selector::PointsSelectorOneOf, Condition, Filter, PointsSelector,
};

client
    .delete_points_blocking(
        "{collection_name}",
        None,
        &PointsSelector {
            points_selector_one_of: Some(PointsSelectorOneOf::Filter(Filter::must([
                Condition::matches("color", "red".to_string()),
            ]))),
        },
        None,
    )
    .await?;
import static io.qdrant.client.ConditionFactory.matchKeyword;

import io.qdrant.client.grpc.Points.Filter;

client
    .deleteAsync(
        "{collection_name}",
        Filter.newBuilder().addMust(matchKeyword("color", "red")).build())
    .get();
using Qdrant.Client;
using static Qdrant.Client.Grpc.Conditions;

var client = new QdrantClient("localhost", 6334);

await client.DeleteAsync(collectionName: "{collection_name}", filter: MatchKeyword("color", "red"));

This example removes all points with { "color": "red" } from the collection.

Retrieve points

There is a method for retrieving points by their ids.

REST API (Schema):

POST /collections/{collection_name}/points
{
    "ids": [0, 3, 100]
}
client.retrieve(
    collection_name="{collection_name}",
    ids=[0, 3, 100],
)
client.retrieve("{collection_name}", {
  ids: [0, 3, 100],
});
client
    .get_points(
        "{collection_name}",
        None,
        &[0.into(), 30.into(), 100.into()],
        Some(false),
        Some(false),
        None,
    )
    .await?;
import java.util.List;

import static io.qdrant.client.PointIdFactory.id;

client
    .retrieveAsync("{collection_name}", List.of(id(0), id(30), id(100)), false, false, null)
    .get();
using Qdrant.Client;

var client = new QdrantClient("localhost", 6334);

await client.RetrieveAsync(
	collectionName: "{collection_name}",
	ids: [0, 30, 100],
	withPayload: false,
	withVectors: false
);

This method has additional parameters with_vectors and with_payload. Using these parameters, you can select parts of the point you want as a result. Excluding helps you not to waste traffic transmitting useless data.

The single point can also be retrieved via the API:

REST API (Schema):

GET /collections/{collection_name}/points/{point_id}

Scroll points

Sometimes it might be necessary to get all stored points without knowing ids, or iterate over points that correspond to a filter.

REST API (Schema):

POST /collections/{collection_name}/points/scroll
{
    "filter": {
        "must": [
            {
                "key": "color",
                "match": {
                    "value": "red"
                }
            }
        ]
    },
    "limit": 1,
    "with_payload": true,
    "with_vector": false
}
client.scroll(
    collection_name="{collection_name}",
    scroll_filter=models.Filter(
        must=[
            models.FieldCondition(key="color", match=models.MatchValue(value="red")),
        ]
    ),
    limit=1,
    with_payload=True,
    with_vectors=False,
)
client.scroll("{collection_name}", {
  filter: {
    must: [
      {
        key: "color",
        match: {
          value: "red",
        },
      },
    ],
  },
  limit: 1,
  with_payload: true,
  with_vector: false,
});
use qdrant_client::qdrant::{Condition, Filter, ScrollPoints};

client
    .scroll(&ScrollPoints {
        collection_name: "{collection_name}".to_string(),
        filter: Some(Filter::must([Condition::matches(
            "color",
            "red".to_string(),
        )])),
        limit: Some(1),
        with_payload: Some(true.into()),
        with_vectors: Some(false.into()),
        ..Default::default()
    })
    .await?;
import static io.qdrant.client.ConditionFactory.matchKeyword;
import static io.qdrant.client.WithPayloadSelectorFactory.enable;

import io.qdrant.client.grpc.Points.Filter;
import io.qdrant.client.grpc.Points.ScrollPoints;

client
    .scrollAsync(
        ScrollPoints.newBuilder()
            .setCollectionName("{collection_name}")
            .setFilter(Filter.newBuilder().addMust(matchKeyword("color", "red")).build())
            .setLimit(1)
            .setWithPayload(enable(true))
            .build())
    .get();
using Qdrant.Client;
using static Qdrant.Client.Grpc.Conditions;

var client = new QdrantClient("localhost", 6334);

await client.ScrollAsync(
	collectionName: "{collection_name}",
	filter: MatchKeyword("color", "red"),
	limit: 1,
	payloadSelector: true
);

Returns all point with color = red.

{
  "result": {
    "next_page_offset": 1,
    "points": [
      {
        "id": 0,
        "payload": {
          "color": "red"
        }
      }
    ]
  },
  "status": "ok",
  "time": 0.0001
}

The Scroll API will return all points that match the filter in a page-by-page manner.

All resulting points are sorted by ID. To query the next page it is necessary to specify the largest seen ID in the offset field. For convenience, this ID is also returned in the field next_page_offset. If the value of the next_page_offset field is null - the last page is reached.

Order points by payload key

Available as of v1.8.0

When using the scroll API, you can sort the results by payload key. For example, you can retrieve points in chronological order if your payloads have a "timestamp" field, as is shown from the example below:

POST /collections/{collection_name}/points/scroll
{
    "limit": 15,
    "order_by": "timestamp", // <-- this!
}
client.scroll(
    collection_name="{collection_name}",
    limit=15,
    order_by="timestamp", # <-- this!
)
client.scroll("{collection_name}", {
  limit: 15,
  order_by: "timestamp", // <-- this!
});
use qdrant_client::qdrant::{Condition, Filter, ScrollPoints, OrderBy};

client
    .scroll(&ScrollPoints {
        collection_name: "{collection_name}".to_string(),
        limit: Some(15),
        order_by: Some(OrderBy {
            key: "timestamp".to_string(),  // <-- this!
            ..Default::default(),
        }),
        ..Default::default()
    })
    .await?;
import io.qdrant.client.grpc.Points.OrderBy;
import io.qdrant.client.grpc.Points.ScrollPoints;

client.scrollAsync(ScrollPoints.newBuilder()
  .setCollectionName("{collection_name}")
  .setLimit(15)
  .setOrderBy(OrderBy.newBuilder().setKey("timestamp").build())
  .build()).get();
await client.ScrollAsync("{collection_name}", limit: 15, orderBy: "timestamp");

You need to use the order_by key parameter to specify the payload key. Then you can add other fields to control the ordering, such as direction and start_from:

"order_by": {
    "key": "timestamp",
    "direction": "desc" // default is "asc"
    "start_from": 123, // start from this value
}
order_by=models.OrderBy(
    key="timestamp",
    direction="desc",  # default is "asc"
    start_from=123,  # start from this value
)
order_by: {
    key: "timestamp",
    direction: "desc", // default is "asc"
    start_from: 123, // start from this value
}
order_by: Some(OrderBy {
    key: "timestamp".to_string(),
    direction: Some(Direction::Desc as i32), // default is Direction::Asc
    start_from: Some(StartFrom {
        value: Some(Value::Integer(123)),
    }),
});
import io.qdrant.client.grpc.Points.Direction;
import io.qdrant.client.grpc.Points.OrderBy;
import io.qdrant.client.grpc.Points.StartFrom;

OrderBy.newBuilder()
  .setKey("timestamp")
  .setDirection(Direction.Desc)
  .setStartFrom(StartFrom.newBuilder()
    .setInteger(123)
    .build())
  .build();
using Qdrant.Client.Grpc;

new OrderBy
{
 Key = "timestamp",
 Direction = Direction.Desc,
 StartFrom = 123
};

Note: for payloads with more than one value (such as arrays), the same point may show up more than once. Each point can appear as many times as the number of elements in the array. For example, if you have a point payload with a timestamp key, and the value for the key is an array of 3 elements, the same point will appear 3 times in the results, one for each timestamp.

When sorting is based on a non-unique value, it is not possible to rely on an ID offset. Thus, next_page_offset is not returned within the response. However, you can still do pagination by combining "order_by": { "start_from": ... } with a { "must_not": [{ "has_id": [...] }] } filter.

Counting points

Available as of v0.8.4

Sometimes it can be useful to know how many points fit the filter conditions without doing a real search.

Among others, for example, we can highlight the following scenarios:

  • Evaluation of results size for faceted search
  • Determining the number of pages for pagination
  • Debugging the query execution speed

REST API (Schema):

POST /collections/{collection_name}/points/count
{
    "filter": {
        "must": [
            {
                "key": "color",
                "match": {
                    "value": "red"
                }
            }
        ]
    },
    "exact": true
}
client.count(
    collection_name="{collection_name}",
    count_filter=models.Filter(
        must=[
            models.FieldCondition(key="color", match=models.MatchValue(value="red")),
        ]
    ),
    exact=True,
)
client.count("{collection_name}", {
  filter: {
    must: [
      {
        key: "color",
        match: {
          value: "red",
        },
      },
    ],
  },
  exact: true,
});
use qdrant_client::qdrant::{Condition, CountPoints, Filter};

client
    .count(&CountPoints {
        collection_name: "{collection_name}".to_string(),
        filter: Some(Filter::must([Condition::matches(
            "color",
            "red".to_string(),
        )])),
        exact: Some(true),
        ..Default::default()
    })
    .await?;
import static io.qdrant.client.ConditionFactory.matchKeyword;

import io.qdrant.client.grpc.Points.Filter;

client
    .countAsync(
        "{collection_name}",
        Filter.newBuilder().addMust(matchKeyword("color", "red")).build(),
        true)
    .get();
using Qdrant.Client;
using static Qdrant.Client.Grpc.Conditions;

var client = new QdrantClient("localhost", 6334);

await client.CountAsync(
	collectionName: "{collection_name}",
	filter: MatchKeyword("color", "red"),
	exact: true
);

Returns number of counts matching given filtering conditions:

{
  "count": 3811
}

Batch update

Available as of v1.5.0

You can batch multiple point update operations. This includes inserting, updating and deleting points, vectors and payload.

A batch update request consists of a list of operations. These are executed in order. These operations can be batched:

The following example snippet makes use of all operations.

REST API (Schema):

POST /collections/{collection_name}/points/batch
{
    "operations": [
        {
            "upsert": {
                "points": [
                    {
                        "id": 1,
                        "vector": [1.0, 2.0, 3.0, 4.0],
                        "payload": {}
                    }
                ]
            }
        },
        {
            "update_vectors": {
                "points": [
                    {
                        "id": 1,
                        "vector": [1.0, 2.0, 3.0, 4.0]
                    }
                ]
            }
        },
        {
            "delete_vectors": {
                "points": [1],
                "vector": [""]
            }
        },
        {
            "overwrite_payload": {
                "payload": {
                    "test_payload": "1"
                },
                "points": [1]
            }
        },
        {
            "set_payload": {
                "payload": {
                    "test_payload_2": "2",
                    "test_payload_3": "3"
                },
                "points": [1]
            }
        },
        {
            "delete_payload": {
                "keys": ["test_payload_2"],
                "points": [1]
            }
        },
        {
            "clear_payload": {
                "points": [1]
            }
        },
        {"delete": {"points": [1]}}
    ]
}
client.batch_update_points(
    collection_name="{collection_name}",
    update_operations=[
        models.UpsertOperation(
            upsert=models.PointsList(
                points=[
                    models.PointStruct(
                        id=1,
                        vector=[1.0, 2.0, 3.0, 4.0],
                        payload={},
                    ),
                ]
            )
        ),
        models.UpdateVectorsOperation(
            update_vectors=models.UpdateVectors(
                points=[
                    models.PointVectors(
                        id=1,
                        vector=[1.0, 2.0, 3.0, 4.0],
                    )
                ]
            )
        ),
        models.DeleteVectorsOperation(
            delete_vectors=models.DeleteVectors(points=[1], vector=[""])
        ),
        models.OverwritePayloadOperation(
            overwrite_payload=models.SetPayload(
                payload={"test_payload": 1},
                points=[1],
            )
        ),
        models.SetPayloadOperation(
            set_payload=models.SetPayload(
                payload={
                    "test_payload_2": 2,
                    "test_payload_3": 3,
                },
                points=[1],
            )
        ),
        models.DeletePayloadOperation(
            delete_payload=models.DeletePayload(keys=["test_payload_2"], points=[1])
        ),
        models.ClearPayloadOperation(clear_payload=models.PointIdsList(points=[1])),
        models.DeleteOperation(delete=models.PointIdsList(points=[1])),
    ],
)
client.batchUpdate("{collection_name}", {
  operations: [
    {
      upsert: {
        points: [
          {
            id: 1,
            vector: [1.0, 2.0, 3.0, 4.0],
            payload: {},
          },
        ],
      },
    },
    {
      update_vectors: {
        points: [
          {
            id: 1,
            vector: [1.0, 2.0, 3.0, 4.0],
          },
        ],
      },
    },
    {
      delete_vectors: {
        points: [1],
        vector: [""],
      },
    },
    {
      overwrite_payload: {
        payload: {
          test_payload: 1,
        },
        points: [1],
      },
    },
    {
      set_payload: {
        payload: {
          test_payload_2: 2,
          test_payload_3: 3,
        },
        points: [1],
      },
    },
    {
      delete_payload: {
        keys: ["test_payload_2"],
        points: [1],
      },
    },
    {
      clear_payload: {
        points: [1],
      },
    },
    {
      delete: {
        points: [1],
      },
    },
  ],
});
use std::collections::HashMap;

use qdrant_client::qdrant::{
    points_selector::PointsSelectorOneOf,
    points_update_operation::{
        ClearPayload, DeletePayload, DeletePoints, DeleteVectors, Operation, PointStructList,
        SetPayload, UpdateVectors,
    },
    PointStruct, PointVectors, PointsIdsList, PointsSelector, PointsUpdateOperation,
    VectorsSelector,
};
use serde_json::json;

client
    .batch_updates_blocking(
        "{collection_name}",
        &[
            PointsUpdateOperation {
                operation: Some(Operation::Upsert(PointStructList {
                    points: vec![PointStruct::new(
                        1,
                        vec![1.0, 2.0, 3.0, 4.0],
                        json!({}).try_into().unwrap(),
                    )],
                    ..Default::default()
                })),
            },
            PointsUpdateOperation {
                operation: Some(Operation::UpdateVectors(UpdateVectors {
                    points: vec![PointVectors {
                        id: Some(1.into()),
                        vectors: Some(vec![1.0, 2.0, 3.0, 4.0].into()),
                    }],
                    ..Default::default()
                })),
            },
            PointsUpdateOperation {
                operation: Some(Operation::DeleteVectors(DeleteVectors {
                    points_selector: Some(PointsSelector {
                        points_selector_one_of: Some(PointsSelectorOneOf::Points(
                            PointsIdsList {
                                ids: vec![1.into()],
                            },
                        )),
                    }),
                    vectors: Some(VectorsSelector {
                        names: vec!["".into()],
                    }),
                    ..Default::default()
                })),
            },
            PointsUpdateOperation {
                operation: Some(Operation::OverwritePayload(SetPayload {
                    points_selector: Some(PointsSelector {
                        points_selector_one_of: Some(PointsSelectorOneOf::Points(
                            PointsIdsList {
                                ids: vec![1.into()],
                            },
                        )),
                    }),
                    payload: HashMap::from([("test_payload".to_string(), 1.into())]),
                    ..Default::default()
                })),
            },
            PointsUpdateOperation {
                operation: Some(Operation::SetPayload(SetPayload {
                    points_selector: Some(PointsSelector {
                        points_selector_one_of: Some(PointsSelectorOneOf::Points(
                            PointsIdsList {
                                ids: vec![1.into()],
                            },
                        )),
                    }),
                    payload: HashMap::from([
                        ("test_payload_2".to_string(), 2.into()),
                        ("test_payload_3".to_string(), 3.into()),
                    ]),
                    ..Default::default()
                })),
            },
            PointsUpdateOperation {
                operation: Some(Operation::DeletePayload(DeletePayload {
                    points_selector: Some(PointsSelector {
                        points_selector_one_of: Some(PointsSelectorOneOf::Points(
                            PointsIdsList {
                                ids: vec![1.into()],
                            },
                        )),
                    }),
                    keys: vec!["test_payload_2".to_string()],
                    ..Default::default()
                })),
            },
            PointsUpdateOperation {
                operation: Some(Operation::ClearPayload(ClearPayload {
                    points: Some(PointsSelector {
                        points_selector_one_of: Some(PointsSelectorOneOf::Points(
                            PointsIdsList {
                                ids: vec![1.into()],
                            },
                        )),
                    }),
                    ..Default::default()
                })),
            },
            PointsUpdateOperation {
                operation: Some(Operation::DeletePoints(DeletePoints {
                    points: Some(PointsSelector {
                        points_selector_one_of: Some(PointsSelectorOneOf::Points(
                            PointsIdsList {
                                ids: vec![1.into()],
                            },
                        )),
                    }),
                    ..Default::default()
                })),
            },
        ],
        None,
    )
    .await?;
import java.util.List;
import java.util.Map;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.grpc.Points.PointStruct;
import io.qdrant.client.grpc.Points.PointVectors;
import io.qdrant.client.grpc.Points.PointsIdsList;
import io.qdrant.client.grpc.Points.PointsSelector;
import io.qdrant.client.grpc.Points.PointsUpdateOperation;
import io.qdrant.client.grpc.Points.PointsUpdateOperation.ClearPayload;
import io.qdrant.client.grpc.Points.PointsUpdateOperation.DeletePayload;
import io.qdrant.client.grpc.Points.PointsUpdateOperation.DeletePoints;
import io.qdrant.client.grpc.Points.PointsUpdateOperation.DeleteVectors;
import io.qdrant.client.grpc.Points.PointsUpdateOperation.PointStructList;
import io.qdrant.client.grpc.Points.PointsUpdateOperation.SetPayload;
import io.qdrant.client.grpc.Points.PointsUpdateOperation.UpdateVectors;
import io.qdrant.client.grpc.Points.VectorsSelector;

client
    .batchUpdateAsync(
        "{collection_name}",
        List.of(
            PointsUpdateOperation.newBuilder()
                .setUpsert(
                    PointStructList.newBuilder()
                        .addPoints(
                            PointStruct.newBuilder()
                                .setId(id(1))
                                .setVectors(vectors(1.0f, 2.0f, 3.0f, 4.0f))
                                .build())
                        .build())
                .build(),
            PointsUpdateOperation.newBuilder()
                .setUpdateVectors(
                    UpdateVectors.newBuilder()
                        .addPoints(
                            PointVectors.newBuilder()
                                .setId(id(1))
                                .setVectors(vectors(1.0f, 2.0f, 3.0f, 4.0f))
                                .build())
                        .build())
                .build(),
            PointsUpdateOperation.newBuilder()
                .setDeleteVectors(
                    DeleteVectors.newBuilder()
                        .setPointsSelector(
                            PointsSelector.newBuilder()
                                .setPoints(PointsIdsList.newBuilder().addIds(id(1)).build())
                                .build())
                        .setVectors(VectorsSelector.newBuilder().addNames("").build())
                        .build())
                .build(),
            PointsUpdateOperation.newBuilder()
                .setOverwritePayload(
                    SetPayload.newBuilder()
                        .setPointsSelector(
                            PointsSelector.newBuilder()
                                .setPoints(PointsIdsList.newBuilder().addIds(id(1)).build())
                                .build())
                        .putAllPayload(Map.of("test_payload", value(1)))
                        .build())
                .build(),
            PointsUpdateOperation.newBuilder()
                .setSetPayload(
                    SetPayload.newBuilder()
                        .setPointsSelector(
                            PointsSelector.newBuilder()
                                .setPoints(PointsIdsList.newBuilder().addIds(id(1)).build())
                                .build())
                        .putAllPayload(
                            Map.of("test_payload_2", value(2), "test_payload_3", value(3)))
                        .build())
                .build(),
            PointsUpdateOperation.newBuilder()
                .setDeletePayload(
                    DeletePayload.newBuilder()
                        .setPointsSelector(
                            PointsSelector.newBuilder()
                                .setPoints(PointsIdsList.newBuilder().addIds(id(1)).build())
                                .build())
                        .addKeys("test_payload_2")
                        .build())
                .build(),
            PointsUpdateOperation.newBuilder()
                .setClearPayload(
                    ClearPayload.newBuilder()
                        .setPoints(
                            PointsSelector.newBuilder()
                                .setPoints(PointsIdsList.newBuilder().addIds(id(1)).build())
                                .build())
                        .build())
                .build(),
            PointsUpdateOperation.newBuilder()
                .setDeletePoints(
                    DeletePoints.newBuilder()
                        .setPoints(
                            PointsSelector.newBuilder()
                                .setPoints(PointsIdsList.newBuilder().addIds(id(1)).build())
                                .build())
                        .build())
                .build()))
    .get();

To batch many points with a single operation type, please use batching functionality in that operation directly.

Awaiting result

If the API is called with the &wait=false parameter, or if it is not explicitly specified, the client will receive an acknowledgment of receiving data:

{
  "result": {
    "operation_id": 123,
    "status": "acknowledged"
  },
  "status": "ok",
  "time": 0.000206061
}

This response does not mean that the data is available for retrieval yet. This uses a form of eventual consistency. It may take a short amount of time before it is actually processed as updating the collection happens in the background. In fact, it is possible that such request eventually fails. If inserting a lot of vectors, we also recommend using asynchronous requests to take advantage of pipelining.

If the logic of your application requires a guarantee that the vector will be available for searching immediately after the API responds, then use the flag ?wait=true. In this case, the API will return the result only after the operation is finished:

{
  "result": {
    "operation_id": 0,
    "status": "completed"
  },
  "status": "ok",
  "time": 0.000206061
}

Points