Configure Multitenancy
How many collections should you create? In most cases, you should only use a single collection with payload-based partitioning. This approach is called multitenancy. It is efficient for most of users, but it requires additional configuration. This document will show you how to set it up.
When should you create multiple collections? When you have a limited number of users and you need isolation. This approach is flexible, but it may be more costly, since creating numerous collections may result in resource overhead. Also, you need to ensure that they do not affect each other in any way, including performance-wise.
Partition by payload
When an instance is shared between multiple users, you may need to partition vectors by user. This is done so that each user can only access their own vectors and can’t see the vectors of other users.
NOTE
The key doesn’t necessarily need to be named
group_id
. You can choose a name that best suits your data structure and naming conventions.
- Add a
group_id
field to each vector in the collection.
PUT /collections/{collection_name}/points
{
"points": [
{
"id": 1,
"payload": {"group_id": "user_1"},
"vector": [0.9, 0.1, 0.1]
},
{
"id": 2,
"payload": {"group_id": "user_1"},
"vector": [0.1, 0.9, 0.1]
},
{
"id": 3,
"payload": {"group_id": "user_2"},
"vector": [0.1, 0.1, 0.9]
},
]
}
client.upsert(
collection_name="{collection_name}",
points=[
models.PointStruct(
id=1,
payload={"group_id": "user_1"},
vector=[0.9, 0.1, 0.1],
),
models.PointStruct(
id=2,
payload={"group_id": "user_1"},
vector=[0.1, 0.9, 0.1],
),
models.PointStruct(
id=3,
payload={"group_id": "user_2"},
vector=[0.1, 0.1, 0.9],
),
],
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.upsert("{collection_name}", {
points: [
{
id: 1,
payload: { group_id: "user_1" },
vector: [0.9, 0.1, 0.1],
},
{
id: 2,
payload: { group_id: "user_1" },
vector: [0.1, 0.9, 0.1],
},
{
id: 3,
payload: { group_id: "user_2" },
vector: [0.1, 0.1, 0.9],
},
],
});
use qdrant_client::{client::QdrantClient, qdrant::PointStruct};
use serde_json::json;
let client = QdrantClient::from_url("http://localhost:6334").build()?;
client
.upsert_points_blocking(
"{collection_name}".to_string(),
None,
vec![
PointStruct::new(
1,
vec![0.9, 0.1, 0.1],
json!(
{"group_id": "user_1"}
)
.try_into()
.unwrap(),
),
PointStruct::new(
2,
vec![0.1, 0.9, 0.1],
json!(
{"group_id": "user_1"}
)
.try_into()
.unwrap(),
),
PointStruct::new(
3,
vec![0.1, 0.1, 0.9],
json!(
{"group_id": "user_2"}
)
.try_into()
.unwrap(),
),
],
None,
)
.await?;
import java.util.List;
import java.util.Map;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.PointStruct;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.upsertAsync(
"{collection_name}",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(vectors(0.9f, 0.1f, 0.1f))
.putAllPayload(Map.of("group_id", value("user_1")))
.build(),
PointStruct.newBuilder()
.setId(id(2))
.setVectors(vectors(0.1f, 0.9f, 0.1f))
.putAllPayload(Map.of("group_id", value("user_1")))
.build(),
PointStruct.newBuilder()
.setId(id(3))
.setVectors(vectors(0.1f, 0.1f, 0.9f))
.putAllPayload(Map.of("group_id", value("user_2")))
.build()))
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.UpsertAsync(
collectionName: "{collection_name}",
points: new List<PointStruct>
{
new()
{
Id = 1,
Vectors = new[] { 0.9f, 0.1f, 0.1f },
Payload = { ["group_id"] = "user_1" }
},
new()
{
Id = 2,
Vectors = new[] { 0.1f, 0.9f, 0.1f },
Payload = { ["group_id"] = "user_1" }
},
new()
{
Id = 3,
Vectors = new[] { 0.1f, 0.1f, 0.9f },
Payload = { ["group_id"] = "user_2" }
}
}
);
- Use a filter along with
group_id
to filter vectors for each user.
POST /collections/{collection_name}/points/search
{
"filter": {
"must": [
{
"key": "group_id",
"match": {
"value": "user_1"
}
}
]
},
"vector": [0.1, 0.1, 0.9],
"limit": 10
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.search(
collection_name="{collection_name}",
query_filter=models.Filter(
must=[
models.FieldCondition(
key="group_id",
match=models.MatchValue(
value="user_1",
),
)
]
),
query_vector=[0.1, 0.1, 0.9],
limit=10,
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.search("{collection_name}", {
filter: {
must: [{ key: "group_id", match: { value: "user_1" } }],
},
vector: [0.1, 0.1, 0.9],
limit: 10,
});
use qdrant_client::{
client::QdrantClient,
qdrant::{Condition, Filter, SearchPoints},
};
let client = QdrantClient::from_url("http://localhost:6334").build()?;
client
.search_points(&SearchPoints {
collection_name: "{collection_name}".to_string(),
filter: Some(Filter::must([Condition::matches(
"group_id",
"user_1".to_string(),
)])),
vector: vec![0.1, 0.1, 0.9],
limit: 10,
..Default::default()
})
.await?;
import java.util.List;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Filter;
import io.qdrant.client.grpc.Points.SearchPoints;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.searchAsync(
SearchPoints.newBuilder()
.setCollectionName("{collection_name}")
.setFilter(
Filter.newBuilder().addMust(matchKeyword("group_id", "user_1")).build())
.addAllVector(List.of(0.1f, 0.1f, 0.9f))
.setLimit(10)
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
using static Qdrant.Client.Grpc.Conditions;
var client = new QdrantClient("localhost", 6334);
await client.SearchAsync(
collectionName: "{collection_name}",
vector: new float[] { 0.1f, 0.1f, 0.9f },
filter: MatchKeyword("group_id", "user_1"),
limit: 10
);
Calibrate performance
The speed of indexation may become a bottleneck in this case, as each user’s vector will be indexed into the same collection. To avoid this bottleneck, consider bypassing the construction of a global vector index for the entire collection and building it only for individual groups instead.
By adopting this strategy, Qdrant will index vectors for each user independently, significantly accelerating the process.
To implement this approach, you should:
- Set
payload_m
in the HNSW configuration to a non-zero value, such as 16. - Set
m
in hnsw config to 0. This will disable building global index for the whole collection.
PUT /collections/{collection_name}
{
"vectors": {
"size": 768,
"distance": "Cosine"
},
"hnsw_config": {
"payload_m": 16,
"m": 0
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.create_collection(
collection_name="{collection_name}",
vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE),
hnsw_config=models.HnswConfigDiff(
payload_m=16,
m=0,
),
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.createCollection("{collection_name}", {
vectors: {
size: 768,
distance: "Cosine",
},
hnsw_config: {
payload_m: 16,
m: 0,
},
});
use qdrant_client::{
client::QdrantClient,
qdrant::{
vectors_config::Config, CreateCollection, Distance, HnswConfigDiff, VectorParams,
VectorsConfig,
},
};
let client = QdrantClient::from_url("http://localhost:6334").build()?;
client
.create_collection(&CreateCollection {
collection_name: "{collection_name}".to_string(),
vectors_config: Some(VectorsConfig {
config: Some(Config::Params(VectorParams {
size: 768,
distance: Distance::Cosine.into(),
..Default::default()
})),
}),
hnsw_config: Some(HnswConfigDiff {
payload_m: Some(16),
m: Some(0),
..Default::default()
}),
..Default::default()
})
.await?;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Collections.CreateCollection;
import io.qdrant.client.grpc.Collections.Distance;
import io.qdrant.client.grpc.Collections.HnswConfigDiff;
import io.qdrant.client.grpc.Collections.VectorParams;
import io.qdrant.client.grpc.Collections.VectorsConfig;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.createCollectionAsync(
CreateCollection.newBuilder()
.setCollectionName("{collection_name}")
.setVectorsConfig(
VectorsConfig.newBuilder()
.setParams(
VectorParams.newBuilder()
.setSize(768)
.setDistance(Distance.Cosine)
.build())
.build())
.setHnswConfig(HnswConfigDiff.newBuilder().setPayloadM(16).setM(0).build())
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.CreateCollectionAsync(
collectionName: "{collection_name}",
vectorsConfig: new VectorParams { Size = 768, Distance = Distance.Cosine },
hnswConfig: new HnswConfigDiff { PayloadM = 16, M = 0 }
);
- Create keyword payload index for
group_id
field.
PUT /collections/{collection_name}/index
{
"field_name": "group_id",
"field_schema": "keyword"
}
client.create_payload_index(
collection_name="{collection_name}",
field_name="group_id",
field_schema=models.PayloadSchemaType.KEYWORD,
)
client.createPayloadIndex("{collection_name}", {
field_name: "group_id",
field_schema: "keyword",
});
use qdrant_client::{client::QdrantClient, qdrant::FieldType};
let client = QdrantClient::from_url("http://localhost:6334").build()?;
client
.create_field_index(
"{collection_name}",
"group_id",
FieldType::Keyword,
None,
None,
)
.await?;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Collections.PayloadSchemaType;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.createPayloadIndexAsync(
"{collection_name}", "group_id", PayloadSchsemaType.Keyword, null, null, null, null)
.get();
using Qdrant.Client;
var client = new QdrantClient("localhost", 6334);
await client.CreatePayloadIndexAsync(collectionName: "{collection_name}", fieldName: "group_id");
Limitations
One downside to this approach is that global requests (without the group_id
filter) will be slower since they will necessitate scanning all groups to identify the nearest neighbors.